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Abstract

In this paper we describe a t{opf-algebraic structure on a vector

space which has as basis a family of trees, and survey some applications

of this structure to combinatorics ire_Section 1, and to differential

operators in _etie_2. In Section 3 we indicate some possible future

directions for this work.

Much of the material discussed in this paper is work-in-progress.

We describe many questions and give some answers.

1 Hopf-algebraic structure of trees and coin-

binatorics

We will describe a Hopf-algebraic structure imposed on the vector space

spanned by the set of equivalence classes of finite rooted trees, and indicate

how this structure can be used to give proofs of classical combinatorial theo-

rems, and how it can be applied in the calculus of differential operators. The
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coalgebra structure we define on this space is very similar to the coalgebra

structure defined in [9]. Itowever, the coalgebra structure defined there was

defined for individual combinatorial objects, rather than for a class of objects

such as the family of rooted trees. Other applications of Hopf algebras to

combinatorics can be found in [12].

Throughout this paper, k will denote a field of characteristic 0 such as

the real numbers or the complex numbers.

By a tree we will mean a finite rooted tree. Let T be the set of equivalence

classes of finite rooted trees, and let k{T} be the k-vector space which has

T as a basis.

We first define the coalgebra structure on k{T}. If t E T is a tree whose

root has children st, .... st, the coproduct A(t) is tile sum of the 2 r terms

tl ® t2, where the children of the root of tl and the children of tile root of t2

range over all 2_ possible partitions of tile children of the root of t into two

subsets. The map e which sends the trivial tree to 1 and every other tree

to 0 is a counit for this coproduct. It is immediate that comultiplication is

cocommutative.

We next define the algebra structure on k{T}. Suppose that tl, t2 E T

are trees. Let sl, ..., s_ be the children of the root oftl. If t2 has n+ 1

nodes (counting the root), there are (n + 1) _ ways to attach the 7"subtrees of

tl which have sl, ..., s_ as roots to the tree t2 by making each si the child of

some node of t2. The product tit2 is defined to be the sum of these (n + 1) _

trees. It can be shown that this product is associative, and that the trivial

tree consisting only of tile root is a right and left unit for this product. It

can also be shown that the maps defining the coalgebra structure are algebra

homomorphisms, so that k{T} is a bialgebra. For details, see [.3].

The bialgebra k{T} is graded: k{T},_ has as basis all trees with 7_ + 1

nodes. Because the bialgebra k{T} is graded connected, it is a Ilop[ algebra.

We summarize tile above discussion in the following theorem.

Theorem 1 The vector space k {T} with basis all equivalence classes of finite

rooted trees is a cocomm_ltative graded connected IIopf algebra.

An important feature of the structure of cocommutative llop[ algebras

over a field of characteristic 0 is the space of primitive elements. If A is a

Hopf algebra, then the primitive elements of A are defined by

P(A)= {ae A I A(_) = 1 ®a+a@l }.



It can be shownthat P(A) is a Lie subalgebra of A-.

Denote the universal enveloping algebra of the Lie algebra L by U(L).

Two important theorems concerning the structure of cocommutative graded

connected Hopf algebras are the following.

Theorem 2 (Milnor-Moore) Let A be a cocommutative graded connected

Hopf algebra. Then

a _- U(P(A))

as Hopf algebras.

Theorem 3 (Poincar_-Birkhoff-Witt) Let L be a Lie algebr(_ u,ith or-

dered basis xl, ..., x,_, .... Then

{x;: ... l i, < ... < i,; o < }

is a basis for U(L).

See [10, page 244] or [14, page 274] for a proof of Theorem 2; see [S,

page 159] for a proof of Theorem 3.

A natural question is to find a basis for P(k{T}). The answer is given

by the following proposition.

Proposition 4 The set of all trees whose root has exactly one child is a basis

for P(k{7-}).

The proof of this proposition is straightforward.

Observing that there is a bijection between trees whose root has one

child, and trees with one fewer node, gotten by deleting the root. we get the

following immediate consequence.

Corollary 5

dimP(k{T}),_ = dimk{T},__ 1

Putting together Theorems 1, 2, 3, and Corollary 5, and expressing tile

resulting recurrence relation on dim k{T},_ in terms of generating functions,

we get the following classical theorem on the number of rooted trees.



Theorem 6 (Cayley 1857) Let an be the number of rooted trees with n

nodes. Then

_z _ : z (1 - z_) °-'
n=l n----I

Other kinds of families of trees give other Hopf algebras. For example, let

(97 be the family of equivalence classes of finite rooted ordered trees. (By

an ordered tree we mean one in which the children of each node are linearly

ordered.) Let k{07"} be the/,--vector space with basis 07-. Then k{(97-} is

a cocommutative Hopf algebra, and

k{07-}_ _'<OTl>,

the free associative algebra generated by C)Tt, the set of ordered trees whose

root has exactly one child. Using the structure of this Hopf algebra, we get

a Hopf-algebraic proof of a formula for the number of ordered rooted trees

discovered by Catalan [2] in 1838.

2 Hopf-algebraic structure of trees and dif-

ferential operators

In this section we discuss an extension of the notion of tree, and its applica-

tion to the study of differential operators.

Let {El, ..., EM} be a finite set of formal symbols. A labeled rooted tree

is a finite rooted tree such that each node other than the root is labeled using

an element from {El, ..., EM}. Note that a label may be used more than

once. We denote the set of all labeled rooted trees labeled with {E: .....

EM} by £7-(E1, ..., Eivl), and the k-vector space with this set as basis by

k{£7-(E_, .... EM)}. As in Section 1, we can make k{£7-(E_, .... EM)}

into a cocommutative graded connected Itopf algebra.

Now consider the situation where the Ei are not formal symbols, but are

differential operators
N 0

j=l

with ai(x ) 6 R. The algebra R is typically either the the algebra of poly-

nomial functions k[xl, ..., xN], the algebra of rational functions k(x:, ...,



XN), or the algebra of smooth functions C°°(k N, k). \ge define a map

g., : k{£T(EI,...,EM)} -+ EndR

as follows. Let t G £T(E1, ..., EM) have k+l nodes, and let f C R. Number
the nonroot nodes of t from 1 to k. We will make use of the summation indices

il, ..., ik in defining Va(t)f. For the root, form the term

Off
To=

Oxi, • • •Oxiv '

where the r children of the root are numbered l, ..., l'. For a nonroot node

numbered j and labeled with Et, form the term

Orai'(x)
Oxi_ • • • i)xi v '

where the r children of this node are numbered l, ..., l'. Then

N

_p(t)f = _ T_Tk__ ... T, To.
il,...,ik=l

It can be shown that this defines an action of the Hopf algebra k{I2T(E1,

• .., EM)} on R which is a measuring.

We now give some examples of applications of this construction.

Applications to symbolic algebra. An important type of computation

which is done in the study of differential operators is the computation of the

map

k<E,,...,EM> --+ EndR,

where k<E1, ..., EM> denotes the free associative algebra generated by tile

differential operators El, ..., EM. The naive computation often leads to

cancellation in the computation. For example

N Oa; 2 Of _, i_ 02f
(E, E2- E2E_)f = _ ai__ +

i_,i2=1 Oxi, Oxi2 al a20xi,i)xi2

, Oa? Of a;' i2 02f
-- a 2 _ Oxi, a 1 0Xil_)X{ 2 (1)

a_,Cga7 Of a_' Oa? _gf



Now consider the map k<E1, ..., EM> _ k{ET(EI,..., EM)} which is

defined by sending Ei to the tree with two nodes, in which the nonroot node

is labeled with Ei. Then E_E_ - E_E1 maps to the difference of two trees,

in both of which the root has one child, labeled with either E2 or El. The

child of the root in turn has one child, labeled with either E1 or E2. In other

words, the cancellation which occured in Equation (1) already occurs at the

tree level. We have a commutative diagram

k<EI,...,EM> k{CT-(E,,..., S,)}

End R

in which it is much more efficient to compute the composition of the right-

pointing arrow and the downward-pointing arrow, than it is to compute the

diagonal arrow directly. In some common cases, the improvement in efficiency

is exponential. A more detailed exposition of this material can be found in [1],

[7] and [61 .

Solution of nonlinear systems of equations. Another application is

the local approximation of a differential equation by an equation which has

a symbolic solution. Suppose that

x 0
F,= F  q(x/ ,

j=l Oxj

where the b!(x) are not necessarily polynomial functions. Let

M

= Z
i=1

where t --_ ui(t) are fixed time varying functions. We are interested in the

differential equation y'(t) = F(y(t),u(t)). In applications, the u, typically

represent controls or other physical parameters describing the system.

It is rare that trajectories of the differential equation can be integrated

explicitly in closed form. There is however a simple case in which this is

true. Assume that for each i = 1, ..., M, the functions _(x) are polynomial

functions of the variables xl, ..., xj-1. In this case trajectories of the differ-

ential equation can be written as explict functions involving quadrature of
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the functions ui. Vector fields of this form arise when tile Fi are homogenous

of degree 1 with respect to a grading of the underlying vector space k 'v.

Therefore we want to find vector fields

N )0@j
j=l

where the Ei are vector fields with polynomial coefficients homogenous of

degree 1 which approximate the F{. Specifically, we want to find E, such

that

E_, ... E_kx'_I,=o= F_, ... F_kx_l,=0, (_)

for all k _< r, for some fixed r. (IIere x _ denotes the monomial x"_1.-. :r'_?'.)

Note that the right-hand sides of Equations (2) are constants; the left-hand

sides are nonlinear polynomials in the coefficients of the polynomials ai(.r ).

By expressing the action of the Ei, "" Eik using trees, we produce a sequence

of systems of nonlinear equations, such that each system involves more of

the coefficients of the polynomials ai(x), and such that if we solve one of the

systems and substitute its solutions into the next system in the sequence, we

get a linear system which we can either solve, or prove insoluble.

For a more detailed discussion of this material, see [5]

Runge-Kutta methods for solving differential equations. An impor-

tant area in numerical analysis is the study of higher order algorithms for the

solution of initial value problems for ordinary differential equations. Specifi-

cally, suppose we are solving the differential equation y' = F(y), sub i_ct to

the initial condition y0 = y(0). Let

}'2 = Yo -t- hc2,1F(}'l)

Y_ : vo+ hc_,_F(_i)+ hc_,_f(g_)

g = Yo -t- hcf, iF(Y1) -t- h%2F(Y2) +"" + hc,,___ F(__, )

and let

yl = Yo + _ hbiF(Yi).
i=1



The problem is to find ci.j and bi to give the best approximation gl _ y(h).

Here we can use trees to get equations which the c,.j and b, must satisfy to

get an approximation of sufficiently high degree.

This application of trees has been studied extensively by Butcher in [1].

The approach taken there is somewhat different than ours: the existence of a

canonical basis for k{7"} allows an identification of k{T}* with a completion

of k{f}, which Butcher makes use of.

In all of these examples there is a common theme: trees allow simple and

systematic management of calculations involving higher derivations, a fact

which was known to Cayley in the middle of the nineteenth century. \Ve use

the Hopf algebra associated with a family of trees systematically to manage

calculations involving trees.

3 Future directions

In this section we discuss some areas for possible future research using the

Hopf-algebraic structure of families of trees.

Since k{£T(E_, ..., E._) acts on R, we have an R/k-bialgebra structure

on R®k{£.T(E_, ..., EM)}. This allows us to use the structure of R/k-

bialgebras (as presented in [11] and [13]) to investigate the action of trees as

higher derivations of R. The R/k-bialgebra structure we have described is

very dependent on tile specific action on R, and on the fact that Ibis action

is defined in terms of commuting differential operators O/Oxl, ..., 0/0:r,x..

It is possible that the use of ordered trees rather than trees will eliminate

this problem.

There is a close connection between functionals on trees and formal po_w'r

series. More specifically, the coefficients a_ of the Taylor series expansion

(x)

a_2._x,_=
rt=0

satisfy

d_ f _=odx n = an.

In a similar fashion, if El, ..., EM are noncommuting differential operators.

we can use the set of values Ei,"" Ei_f[,:=o, or the set of values g,(t)fl_=0,
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for t E CT(E1, ..., EM). In this way we see that k{£T(EI, ..., EM)}" is a

generalization of formal power series.
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